* triode_nh.txt Oct 9, 2012 Stephie * decided to date these and indicate what's been changed. * I've added a new generic device called build_triode * there is a file build_tube.asc that allows you to add triodes pretty easily... * once you have the params set, simply add a file like 01A below. * I left the old 01a file in if you want to use that one * this uses a superset of the output from the JAVA script ".jar" files so you can feed those parms into build_triode as well * Note: This collection has a lot of devices modelled by a lot of different people. In no way do I intend for anyone to think * this is solely my work. I've updated and modified a lot of models. You will see a few different formats, as different * authors tend to use different formats. I have corrected some mistakes and expanded on most of the models included. * * Caution: Please note that some of the models are useful ONLY in limited circumstances, for instance the 12BH7A model below * has a nasty defect in that in cutoff, it actually produced negative voltage on the plate. Tubes don't work that * way, of course. I suggest using the 12BH7alt model instead. * Many of the models have simple grid current models, some have none at all. * The later ones reasonably accurately model both A1 and A2 operation. * Latest device added: 46LoMu and 46HiMu .PARAM EMISSIONRANGE = 1 .SUBCKT TRIODENH A G K +PARAMS: LIP=1 LIF=3.7E-3 RAF=18E-3 RAS=1 CDO=0 RAP=4E-3 + ERP=1.5 + MU0=17.3 MUR=19E-3 EMC=9.6E-6 GCO=0 GCF=213E-6 + CGA=3.9p CGK=2.4p CAK=0.7p Elim LI 0 VALUE {PWR(LIMIT(V(A,K),0,1E6),{LIP})*{LIF}} Egg GG 0 VALUE {V(G,K)-{CDO}} Erpf RP 0 VALUE {1-PWR(LIMIT(-V(GG)*{RAF},0,0.999),{RAS})+LIMIT(V(GG),0,1E6)*{RAP}} Egr GR 0 VALUE {LIMIT(V(GG),0,1E6)+LIMIT((V(GG))*(1+V(GG)*{MUR}),0,-1E6)} Eem EM 0 VALUE {LIMIT(V(A,K)+V(GR)*{MU0},0,1E6)} Eep EP 0 VALUE {PWR(V(EM),ERP)*{EMC}*{EMISSIONRANGE}*V(RP)} Eel EL 0 VALUE {LIMIT(V(EP),0,V(LI))} Eld LD 0 VALUE {LIMIT(V(EP)-V(LI),0,1E6)} Ga A K VALUE {V(EL)} Egf GF 0 VALUE {PWR(LIMIT(V(G,K)-{GCO},0,1E6),1.5)*{GCF}} Gg G K VALUE {(V(GF)+V(LD))} CM1 G K {CGK} CM2 A G {CGA} CM3 A K {CAK} RF1 A 0 1000MEG RF2 G 0 1000MEG RF3 K 0 1000MEG .ENDS .SUBCKT build_triode 1 2 3 + params: mu=50 kg1=50 ex=1.5 kp=3000 kvb=50 r1=0 vct=0 + rgi=1e4 goffset=1 ex1=1.5 rgrid=1e6 + ccg=2p cgp=1p ccp=3p B1 7 0 V=v(1,3)/{kp}*log(1+exp({kp}*(1/{mu}+(v(5,3)-i(b2)*{r1})/sqrt({kvb}+v(1,3)*v(1,3))))) B2 5 3 i={EMISSIONRANGE}*(pwr(v(5,3),{ex1})+pwrs(v(5,3),{ex1}))/({rgrid}*(v(1,3)+{goffset})) B3 1 3 I={EMISSIONRANGE}*(pwr(v(7),{ex})+pwrs(v(7),{ex}))/{kg1} B6 5 3 i=if(v(2,3)>0,{EMISSIONRANGE}*v(5,3)/{rgi},0) V3 5 2 {vct} r5 7 0 1e9 r6 5 3 1e9 c1 2 3 {ccg} c2 1 2 {cgp} c3 1 3 {ccp} .ENDS .subckt 01A 1 2 3 XV1 1 2 3 build_triode + params: mu=7.7 ex=1.512 kg1=8700 kp=57 kvb=1116 rgi=1000 vct=.372 + ccg=3.1p cgp=8.1p ccp=2.2p .ends .subckt 01A_old 1 2 3 + params: mu=7.7 ex=1.512 kg1=8700 kp=57 kvb=1116 rgi=1000 vct=.372 + ccg=3.1p cgp=8.1p ccp=2.2p e1 7 0 value= +{v(1,3)/kp*log(1+exp(kp*(1/mu+v(5,3)/sqrt(kvb+v(1,3)*v(1,3)))))} re1 7 0 1g g1 1 3 value= {(pwr(v(7),ex)+pwrs(v(7),ex))/kg1} rcp 1 3 1g c1 2 3 {ccg} c2 1 2 {cgp} c3 1 3 {ccp} r1 5 6 {rgi} v1 5 2 {vct} d3 6 3 dx .model dx d(is=1n rs=1 cjo=1pf tt=1n) .ends .SUBCKT 2A3 A G K XV1 A G K TRIODENH +PARAMS: LIP= 1.5 LIF= .003 RAF= 1.92357959289845E-03 RAS= .98 CDO= 0 + RAP= 0.005 ERP= 1.55 + MU0= 4.2 MUR= 0.0006 EMC= 0.0000868 + GCO=-0.2 GCF= 0.00001 + CGA=1.65E-11 CGK=7.50E-12 CAK=5.50E-12 .ENDS .SUBCKT 2A3_sofia A G K +PARAMS: MU=4.545 ERP=1.5 + KK1=1744 KP=41.4 KVB=17.1 vg0=1.5 + CGA=16.5p CGK=7.5p CAK=5.5p RGI=1000 .func V_6() {KP*( (1/MU)+((V(G,K)-vg0)/sqrt(V(A,K)**2+KVB**2)) )} E8 8 0 VALUE={(V(A,K))/KP*LN(1+EXP(V_6()))} Eam am 0 VALUE= {2*Pow(V(8),ERP)/KK1} GA A K VALUE={V(am)} D3 5 k DX ; FOR GRID CURRENT R1 g 5 {RGI} ; FOR GRID CURRENT Rak A K 1G Rgk G K 1G C1 G K {CGK} C2 G A {CGA} C3 A K {CAK} .MODEL DX D(IS=1N RS=1) .ENDS .subckt 2C51 1 2 3 + params: mu=40.9 ex=1.71 kg1=825 kp=126 kvb=708 rgi=2000 vct=.01 + ccg=2.3p cgp=1.3p ccp=1.3p e1 7 0 value= +{v(1,3)/kp*log(1+exp(kp*(1/mu+v(5,3)/sqrt(kvb+v(1,3)*v(1,3)))))} re1 7 0 1g g1 1 3 value= {(pwr(v(7),ex)+pwrs(v(7),ex))/kg1} rcp 1 3 1g c1 2 3 {ccg} c2 1 2 {cgp} c3 1 3 {ccp} ;r1 2 6 {rgi} rconv 2 3 1e9 v1 5 2 {vct} ;d3 6 3 dx1 .model dx1 d(is=1n rs=1 cjo=1pf N=1.5 tt=1n) .ends .subckt 3A5 1 2 3 ; uses vacuum diode grid current model + params: mu=15.2 ex=1.526 kg1=3495 kp=162 kvb=10 rgi=400 + ccg=0.9p cgp=3.2p ccp=1.0p e1 7 0 value= +{v(1,3)/kp*log(1+exp(kp*(1/mu+v(5,3)/sqrt(kvb+v(1,3)*v(1,3)))))} re1 7 0 1g g1 1 3 value= {(pwr(v(7),ex)+pwrs(v(7),ex))/kg1} r1 2 5 {rgi} g2 5 3 value= {(pwr(v(2,3),ex)+pwrs(v(2,3),ex))/(rgi*(v(1,3)+7))} ; g1 curr rcg 2 3 1g rcp 1 3 1g c1 2 3 {ccg} c2 1 2 {cgp} c3 1 3 {ccp} .ends .SUBCKT 3CX300 A G K XV1 A G K TRIODENH +PARAMS: LIP= 1.5 LIF= 10 RAF= 0.00536 RAS= 1 CDO= 0 + RAP= 0.005 ERP= 1.25 + MU0= 8.321 MUR= 0.0012 EMC= 0.000533 + GCO= 0 GCF= 0.0001 + CGA=1.00E-11 CGK=2.50E-11 CAK=1.00E-12 .ENDS .subckt 6AM4 P G K Bp P K I=(0.01033900924m)*uramp(V(P,K)*ln(1.0+(-0.007076797646)+exp((1.906422463)+(1.906422463)*((116.802414)+(-1169.550306m)*V(G,K))*V(G,K)/sqrt((17.88295266)**2+(V(P,K)-(-11.80479238))**2)))/(1.906422463))**(1.420116524) Cgk G K 4.4p Cgp G P 2.4p Cpk P K 0.16p .ends 6am4 .SUBCKT 6AN8T 1 2 3 ; P G C; NEW MODEL ; TRIODE SECTION + PARAMS: MU=21.5 EX=1.3 KG1=1180 KP=84 KVB=300 RGI=2000 + CCG=2.3P CGP=2.2P CCP=1.0P ; ADD .7PF TO ADJACENT PINS; .5 TO OTHERS. E1 7 0 VALUE= +{V(1,3)/KP*LOG(1+EXP(KP*(1/MU+V(2,3)/SQRT(KVB+V(1,3)*V(1,3)))))} RE1 7 0 1G G1 1 3 VALUE={(PWR(V(7),EX)+PWRS(V(7),EX))/KG1} RCP 1 3 1G ; TO AVOID FLOATING NODES IN MU-FOLLOWER C1 2 3 {CCG} ; CATHODE-GRID; WAS 1.6P C2 2 1 {CGP} ; GRID-PLATE; WAS 1.5P C3 1 3 {CCP} ; CATHODE-PLATE; WAS 0.5P D3 5 3 DX ; FOR GRID CURRENT R1 2 5 {RGI} ; FOR GRID CURRENT .MODEL DX D(IS=1N RS=1 CJO=10PF TT=1N) .ENDS .SUBCKT 6AS7_6080 A G K XV1 A G K TRIODENH +PARAMS: LIP= 1 LIF= 0.01 RAF= 0.0058 RAS= 0.7 CDO= 0 + RAP= 0.035 ERP= 1.5 + MU0= 2.05 MUR= 0.0017 EMC= 0.0005 + GCO= 0 GCF= 0 + CGA=1.10E-11 CGK=8.00E-12 CAK=3.00E-12 .ENDS .SUBCKT 4x6AS7_6080 A G K XV1 A G K TRIODENH +PARAMS: LIP= 1 LIF= 0.1 RAF= 0.0058 RAS= 0.7 CDO= 0 + RAP= 0.035 ERP= 1.5 + MU0= 2.05 MUR= 0.0017 EMC= 0.002 + GCO= 0 GCF= 0 + CGA=4.40E-11 CGK=3.20E-11 CAK=1.20E-11 .ENDS .subckt 6AQ8_ECC85 1 2 3 + params: mu=68.2 ex=1.386 kg1=487 kp=234 kvb=1680 rgi=2000 vct=.346 + ccg=3.0p cgp=1.5p ccp=1.2p e1 7 0 value= +{v(1,3)/kp*log(1+exp(kp*(1/mu+v(5,3)/sqrt(kvb+v(1,3)*v(1,3)))))} re1 7 0 1g g1 1 3 value= {(pwr(v(7),ex)+pwrs(v(7),ex))/kg1} rcp 1 3 1g c1 2 3 {ccg} c2 1 2 {cgp} c3 1 3 {ccp} r1 5 6 {rgi} v1 5 2 {vct} d3 6 3 dx .model dx d(is=1n rs=1 cjo=1pf tt=1n) .ends .SUBCKT 6BL8-t 1 2 3 XV1 1 2 3 build_triode +PARAMS: mu=20 kg1=1000 ex=1.48 kp=87 kvb=38 r1=0 vct=.61 + rgrid=1e8 goffset=800 ex1=1.5 rgi=5k ccg=2.5p cgp=1.5p ccp=1.8p .ENDS .SUBCKT 6BM8 A G K XV1 A G K TRIODENH +PARAMS: LIP= 1.5 LIF= 10 RAF= 0.030667 RAS= 5 CDO=-0.5 + RAP= 0.587 ERP= 1.5 + MU0= 50 MUR= 0.035 EMC= 0.00000256 + GCO= 0 GCF= 0 + CGA=4.00E-12 CGK=2.70E-12 CAK=4.00E-12 .ENDS .subckt 6BQ5_EL84_T 1 2 3 + params: mu=18.8 ex=1.5 kg1=540 kp=165 kvb=174 rgi=1000 vct=0.01 + ccg=10.5p cgp=4.9p ccp=6.5p e1 7 0 value= +{v(1,3)/kp*log(1+exp(kp*(1/mu+v(5,3)/sqrt(kvb+v(1,3)*v(1,3)))))} re1 7 0 1g g1 1 3 value= {(pwr(v(7),ex)+pwrs(v(7),ex))/kg1} rcp 1 3 1g c1 2 3 {ccg} c2 1 2 {cgp} c3 1 3 {ccp} r1 5 6 {rgi} v1 5 2 {vct} d3 6 3 dx .model dx d(is=1n rs=1 cjo=1pf tt=1n) .ends .SUBCKT 6C33C_sofia A G K +PARAMS: MU=2.67 ERP=1.45 + KK1=418 KP=14.6 KVB=5 + CGA=30p CGK=30p CAK=10p RGI=1000 .func V_6() {KP*( (1/MU)+(V(G,K)/sqrt(V(A,K)**2+KVB**2)) )} E8 8 0 VALUE={(V(A,K))/KP*LN(1+EXP(V_6()))} Eam am 0 VALUE= {2*Pow(V(8),ERP)/KK1} GA A K VALUE={V(am)} D3 5 k DX ; FOR GRID CURRENT R1 g 5 {RGI} ; FOR GRID CURRENT Rak A K 1G Rgk G K 1G C1 G K {CGK} C2 G A {CGA} C3 A K {CAK} .MODEL DX D(IS=1N RS=1) .ENDS .SUBCKT 6C4C A G K +PARAMS: MU=4.4 ERP=1.5 + KK1=2136 KP=49.5 KVB=23 vg0=-3 + CGA=16.5p CGK=7.5p CAK=5.5p RGI=1000 ;(2A3 values) .func V_6() {KP*( (1/MU)+((V(G,K)-vg0)/sqrt(V(A,K)**2+KVB**2)) )} E8 8 0 VALUE={(V(A,K))/KP*LN(1+EXP(V_6()))} Eam am 0 VALUE= {2*Pow(V(8),ERP)/KK1} GA A K VALUE={V(am)} D3 5 k DX ; FOR GRID CURRENT R1 g 5 {RGI} ; FOR GRID CURRENT Rak A K 1G Rgk G K 1G C1 G K {CGK} C2 G A {CGA} C3 A K {CAK} .MODEL DX D(IS=1N RS=1) .ENDS .subckt 6C45-PE 1 2 3 ; plate grid cathode + params: mu=47.4501 ex=2.374193 kg1=268.615545 kp=485.735371 kvb=501.503636 rgi=300 + ccg=2.4p cgp=4p ccp=.7p e1 7 0 value= {v(1,3)/kp*log(1+exp(kp*(1/mu+v(2,3)/sqrt(kvb+v(1,3)*v(1,3)))))} re1 7 0 1g g1 1 3 value= {(pwr(v(7),ex)+pwrs(v(7),ex))/kg1} rcp 1 3 1g c1 2 3 {ccg} c2 1 2 {cgp} c3 1 3 {ccp} r1 2 5 {rgi} d3 5 3 dx .model dx d(is=1n rs=1 cjo=10pf tt=1n) .ends .subckt 6CG7 1 2 3 + params: mu=21.17 ex=1.442 kg1=1920 kp=150 kvb=10 rgi=1000 vct=.48 + ccg=2.3p cgp=4.9p ccp=2.2p e1 7 0 value= +{v(1,3)/kp*log(1+exp(kp*(1/mu+v(5,3)/sqrt(kvb+v(1,3)*v(1,3)))))} re1 7 0 1g g1 1 3 value= {(pwr(v(7),ex)+pwrs(v(7),ex))/kg1} rcp 1 3 1g c1 2 3 {ccg} c2 1 2 {cgp} c3 1 3 {ccp} r1 5 6 {rgi} v1 5 2 {vct} d3 6 3 dx .model dx d(is=1n rs=1 cjo=1pf tt=1n) .ends .subckt 6CW4 1 2 3 ; placca griglia catodo NUVISTOR R.C.A. + params: mu=68.75 ex=1.35 kg1=160 kp=250 kvb=300 rgi=200 + ccg=4.1p cgp=.92p ccp=.18p + a=2.133e-7 b=-9.40e-5 c=.0139666 d=.64 e1 7 0 value= +{v(1,3)/kp*log(1+exp(kp*(1/mu+v(2,3)/sqrt(kvb+v(1,3)*v(1,3)))))} re1 7 0 1g e2 8 0 value= +{a*v(1,3)*v(1,3)*v(1,3)+b*v(1,3)*v(1,3)+c*v(1,3)+d} re2 8 0 1g g1 1 3 value= {(pwr(v(7),v(8))+pwrs(v(7),v(8)))/kg1} rcp 1 3 1g c1 2 3 {ccg} c2 1 2 {cgp} c3 1 3 {ccp} r1 2 5 {rgi} d3 5 3 dx .model dx d(is=1n rs=1 cjo=10pf tt=1n) .ends .SUBCKT 6DJ8 A G K XV1 A G K TRIODENH +PARAMS: LIP= 1.5 LIF= 10 RAF= 0.09 RAS= 0.2 CDO= 0 + RAP= 0 ERP= 1.35 + MU0= 33 MUR= 0.02 EMC= 0.0000795 + GCO=-0.2 GCF= 0 + CGA=1.40E-12 CGK=3.30E-12 CAK=1.80E-12 .ENDS .subckt 6H30 P G K Bp P K I=(0.3800825583m)*uramp(V(P,K)*ln(1.0+(-0.02540430176)+exp((7.018331616)+(7.018331616)*((15.85848193)+(-66.34009258m)*V(G,K))*V(G,K)/sqrt((27.2125877)**2+(V(P,K)-(5.267363515))**2)))/(7.018331616))**(1.211856956) .ends 6H30 .subckt 6HV5 P G K Bp P K I=((0.002251977888m)+(-5.369015936e-005m)*V(G,K))*uramp((370.7812379)*V(G,K)+V(P,K)+(423.2938397))**1.5 * V(P,K)/(V(P,K)+(57.14378617)) .ends .subckt 6J4 1 2 3 + params: mu=94.8 ex=1.274 kg1=103 kp=153 kvb=792 rgi=2000 vct=.122 + ccg=5.5p cgp=4.0p ccp=5.0p e1 7 0 value= +{v(1,3)/kp*log(1+exp(kp*(1/mu+v(5,3)/sqrt(kvb+v(1,3)*v(1,3)))))} re1 7 0 1g g1 1 3 value= {(pwr(v(7),ex)+pwrs(v(7),ex))/kg1} rcp 1 3 1g c1 2 3 {ccg} c2 1 2 {cgp} c3 1 3 {ccp} r1 5 6 {rgi} v1 5 2 {vct} d3 6 3 dx .model dx d(is=1n rs=1 cjo=1pf tt=1n) .ends .subckt 6J6 1 2 3 + params: mu=38.9 ex=1.484 kg1=780 kp=162 kvb=1176 rgi=2000 vct=.384 + ccg=2.6p cgp=1.5p ccp=1.6p e1 7 0 value= +{v(1,3)/kp*log(1+exp(kp*(1/mu+v(5,3)/sqrt(kvb+v(1,3)*v(1,3)))))} re1 7 0 1g g1 1 3 value= {(pwr(v(7),ex)+pwrs(v(7),ex))/kg1} rcp 1 3 1g c1 2 3 {ccg} c2 1 2 {cgp} c3 1 3 {ccp} r1 5 6 {rgi} v1 5 2 {vct} d3 6 3 dx .model dx d(is=1n rs=1 cjo=1pf tt=1n) .ends .SUBCKT 6N1P A G K XV1 A G K TRIODENH +PARAMS: LIP= 1.5 LIF= 10 RAF= 0.01 RAS= 1 CDO= 0 + RAP= 0 ERP= 1.6 + MU0= 37.5 MUR= 0.01 EMC= 0.000005 + GCO= 0 GCF= 0 + CGA=1.60E-12 CGK=3.20E-12 CAK=1.50E-12 .ENDS .subckt 6N6P 1 2 3 + params: mu=18.8 ex=1.666 kg1=810 kp=85.5 kvb=600 rgi=2000 vct=.02 + ccg=4.4p cgp=1.7p ccp=1.85p e1 7 0 value= +{v(1,3)/kp*log(1+exp(kp*(1/mu+v(5,3)/sqrt(kvb+v(1,3)*v(1,3)))))} re1 7 0 1g g1 1 3 value= {(pwr(v(7),ex)+pwrs(v(7),ex))/kg1} rcp 1 3 1g c1 2 3 {ccg} c2 1 2 {cgp} c3 1 3 {ccp} r1 5 6 {rgi} v1 5 2 {vct} d3 6 3 dx .model dx d(is=1n rs=1 cjo=1pf tt=1n) .ends .SUBCKT 6SL7GT P G K E1 2 0 VALUE={V(P,K)+65.5*V(G,K)} R1 2 0 1.0K Gp P K VALUE={1.54E-6*(PWR(V(2),1.5)+PWRS(V(2),1.5))/2} Cgk G K 3.2P Cgp G P 2.8P Cpk P K 3.5P .ENDS .SUBCKT 6SN7GTB A G K XV1 A G K TRIODENH +PARAMS: LIP= 1 LIF= 0.0037 RAF= 0.02 RAS= 2 CDO= 0 + RAP= 0.002 ERP= 1.4 + MU0= 19.2642 MUR= 0.006167 EMC= 0.0000189 + GCO= 0 GCF= 0.000213 + CGA=3.90E-12 CGK=2.40E-12 CAK=7.00E-13 .ENDS .SUBCKT 6SN7_sofia A G K +PARAMS: MU=21.95 ERP=1.5 + KK1=2100 KP=169 KVB=4 vg0=-.45 + CGA=4p CGK=3p CAK=1.2p RGI=1000 .func V_6() {KP*( (1/MU)+((V(G,K)-vg0)/sqrt(V(A,K)**2+KVB**2)) )} E8 8 0 VALUE={(V(A,K))/KP*LN(1+EXP(V_6()))} Eam am 0 VALUE= {2*Pow(V(8),ERP)/KK1} GA A K VALUE={V(am)} D3 5 k DX ; FOR GRID CURRENT R1 g 5 {RGI} ; FOR GRID CURRENT Rak A K 1G Rgk G K 1G C1 G K {CGK} C2 G A {CGA} C3 A K {CAK} .MODEL DX D(IS=1N RS=1) .ENDS .subckt 12A4 P G K Bp P K I=(0.04842259598m)*uramp(V(P,K)*ln(1.0+(-0.1171696503)+exp((6.561427624)+(6.561427624)*((18.54552963)+(-100.6055605m)*V(G,K))*V(G,K)/sqrt((40.8808477)**2+(V(P,K)-(25.43292096))**2)))/(6.561427624))**(1.491616235) .ends .SUBCKT 12AT7_ECC81 A G K XV1 A G K TRIODENH +PARAMS: LIP= 1 LIF= 0.0037 RAF= 0.09869 RAS= 1 CDO=-0.5 + RAP= 0.1 ERP= 1.4 + MU0= 45.093 MUR= 0.012937 EMC= 0.00000863 + GCO=-0.5 GCF= 0.00012 + CGA=1.60E-12 CGK=2.30E-12 CAK=4.00E-13 .ENDS .SUBCKT 12AU7_ECC82 A G K XV1 A G K TRIODENH +PARAMS: LIP= 1 LIF= 0.0037 RAF= 0.000001 RAS= 2.065382774 CDO= 0 + RAP= 0.18 ERP= 1.4 + MU0= 17.08958652 MUR= 0.010938375 EMC= 0.0000183 + GCO= 0 GCF= 0.00012 + CGA=1.60E-12 CGK=1.80E-12 CAK=4.50E-13 .ENDS .subckt 12AV7 1 2 3 + params: mu=45 ex=1.4 kg1=465 kp=132 kvb=181 rgi=2000 vct=.356 + ccg=3.2p cgp=1.9p ccp=1.4p e1 7 0 value= +{v(1,3)/kp*log(1+exp(kp*(1/mu+v(5,3)/sqrt(kvb+v(1,3)*v(1,3)))))} re1 7 0 1g g1 1 3 value= {(pwr(v(7),ex)+pwrs(v(7),ex))/kg1} rcp 1 3 1g c1 2 3 {ccg} c2 1 2 {cgp} c3 1 3 {ccp} r1 5 6 {rgi} v1 5 2 {vct} d3 6 3 dx .model dx d(is=1n rs=1 cjo=1pf tt=1n) .ends .SUBCKT 12AX7_ECC83 A G K XV1 A G K TRIODENH +PARAMS: LIP= 1.5 LIF= 0.000016 RAF= 0.076498 RAS= 1 CDO=-0.53056 + RAP= 0.18 ERP= 1.5 + MU0= 87.302 MUR=-0.013621 EMC= 0.00000111 + GCO=-0.2 GCF= 0.00001 + CGA=3.90E-12 CGK=2.40E-12 CAK=7.00E-13 .ENDS .subckt 12AY7_6072A 1 2 3 + params: mu=45 ex=1.47 kg1=2355 kp=300 kvb=136.5 rgi=950 vct=.704 + ccg=1.3p cgp=1.3p ccp=0.6p e1 7 0 value= +{v(1,3)/kp*log(1+exp(kp*(1/mu+v(5,3)/sqrt(kvb+v(1,3)*v(1,3)))))} re1 7 0 1g g1 1 3 value= {(pwr(v(7),ex)+pwrs(v(7),ex))/kg1} rcp 1 3 1g c1 2 3 {ccg} c2 1 2 {cgp} c3 1 3 {ccp} r1 5 6 {rgi} v1 5 2 {vct} ; offset grid voltage d3 6 3 dx .model dx d(is=1n rs=1 cjo=1pf tt=1n) .ends .subckt 12B4 P G K Bp P K I=(0.7475666979m)*uramp(V(P,K)*ln(1.0+(-0.03869784353)+exp((5.06748961)+(5.06748961)*((7.783573199)+(-7.718521472m)*V(G,K))*V(G,K)/sqrt((16.65965534)**2+(V(P,K)-(1.974437216))**2)))/(5.06748961))**(1.293967904) .ends 12B4 .SUBCKT 12BH7A P G K E1 2 0 VALUE={V(P,K)+16.64*V(G,K)} R1 2 0 1.0K Gp P K VALUE={22.34E-6*(PWR(V(2),1.5)+PWRS(V(2),1.5))/2} Cgk G K 3.2P Cgp G P 2.6P Cpk P K 0.5P .ENDS .subckt 12BH7alt 1 2 3 ; updated version of 12BH7A 10-4-12, Stephie. Has reasonable grid current model and performance XV1 1 2 3 build_triode + params: mu=23.9 ex=1.54 kg1=1050 kvb=125 kp=67 rgrid=17 vct=.68 R1=38 ex1=1.6 rgi=1e8 goffset=85 + ccg=3.2p cgp=2.6p ccp=0.5p .ends .subckt 46LoMu 1 2 3 ; added 10-9-12, Stephie. 46 is a dual grid tube. Lo Mu = g2 tied to plate. Used as a Class A1 driver tube XV1 1 2 3 build_triode + params: mu=5.6 kg1=5960 ex=1.58 kp=80 kvb=25 R1=225 vct=1.25 rgrid=498 goffset=31 ex1=1.7 rgi=1e8 + ccg=3p cgp=7p ccp=3p ; capacitances are estimates not listed on spec sheets .ends .subckt 46HiMu 1 2 3 ; added 10-9-12, Stephie. 46 is a dual grid tube. Hi Mu = g2 tied to g1. Used as a P-P class B P.A. (or A2 S.E.) XV1 1 2 3 build_triode + params: mu=91 kg1=7049 ex=1.655 kp=180 kvb=25 R1=225 vct=1.25 rgrid=498 goffset=31 ex1=1.77 rgi=1e8 + ccg=3p cgp=7p ccp=3p ; capacitances are estimates not listed on spec sheets .ends .SUBCKT 71a A G K +PARAMS: MU=3.15 ERP=1.5 + KK1=6350 KP=26.5 KVB=9 vg0=0.5 va0=6.0 + CGA=7.4p CGK=3.7p CAK=2.1p RGI=1000 .func V_6() {KP*( (1/MU)+((V(G,K)-vg0)/sqrt(V(A,K)**2+KVB**2)) )} E8 8 0 VALUE={(V(A,K)-va0)/KP*LN(1+EXP(V_6()))} Eam am 0 VALUE= {2*Pow(V(8),ERP)/KK1} GA A K VALUE={V(am)} D3 5 k DX ; FOR GRID CURRENT R1 g 5 {RGI} ; FOR GRID CURRENT Rak A K 1G Rgk G K 1G C1 G K {CGK} C2 G A {CGA} C3 A K {CAK} .MODEL DX D(IS=1N RS=1) .ENDS .subckt 75TL P G K Bp P K I=((0.008071931767m)+(3.503608694e-005m)*V(G,K))*uramp((11.35872332)*V(G,K)+V(P,K)+(-21.07038254))**1.5 * V(P,K)/(V(P,K)+(-4.024455933)) .ends .SUBCKT 76 A G K XV1 A G K TRIODENH +PARAMS: LIP= 1 LIF= 10 RAF= 0.015 RAS= 1.8 CDO= 0 + RAP= 0 ERP= 1.6 + MU0= 12.8 MUR= 0.001 EMC= 0.000008 + GCO= 0 GCF= 0 + CGA=2.80E-12 CGK=3.50E-12 CAK=2.50E-12 .ENDS .subckt 211_VT4C 1 3 4 ; TRIODO DI POTENZA D.H.T. ( G.E.) g1 2 4 value = {(exp(1.5*(log((v(2,4)/12)+v(3,4)))))/3010} c1 3 4 6p c2 3 1 14.5p c3 1 4 5.5p r1 3 5 10k d1 1 2 dx d2 4 2 dx2 d3 5 4 dx .model dx d(is=1p rs=1) .model dx2 d(is=1n rs=1) .ends .SUBCKT GL211 P G K E1 2 0 VALUE={V(P,K)+12.11*V(G,K)} R1 2 0 1.0K Gp P K VALUE={9.39E-6*(PWR(V(2),1.5)+PWRS(V(2),1.5))/2} Gg G K VALUE={358E-6*(PWR(V(G,K),1.5)+PWRS(V(G,K),1.5))/2} Cgk G K 6.0P Cgp G P 14.5P Cpk P K 5.5P .ENDS .SUBCKT 300B A G K XV1 A G K TRIODENH +PARAMS: LIP= 1 LIF= 10 RAF= 0.00311 RAS= 1.013608 CDO= 0 + RAP= 0 ERP= 1.5 + MU0= 3.7992 MUR= 0.000362 EMC= 0.000116 + GCO= 0 GCF= 0 + CGA=1.50E-11 CGK=9.00E-12 CAK=4.30E-12 .ENDS .SUBCKT 300B_sofia A G K +PARAMS: MU=4.16 ERP=1.5 + KK1=1922 KP=45.5 KVB=7 vg0=3 + CGA=15.p CGK=9.p CAK=4.3p RGI=1000 .func V_6() {KP*( (1/MU)+((V(G,K)-vg0)/sqrt(V(A,K)**2+KVB**2)) )} E8 8 0 VALUE={(V(A,K))/KP*LN(1+EXP(V_6()))} Eam am 0 VALUE= {2*Pow(V(8),ERP)/KK1} GA A K VALUE={V(am)} D3 5 k DX ; FOR GRID CURRENT R1 g 5 {RGI} ; FOR GRID CURRENT Rak A K 1G Rgk G K 1G C1 G K {CGK} C2 G A {CGA} C3 A K {CAK} .MODEL DX D(IS=1N RS=1) .ENDS .subckt 437 P G K Bp P K I=(0.02254655914m)*uramp(V(P,K)*ln(1.0+(-0.4880850946)+exp((0.9206824464)+(0.9206824464)*((62.11491976)+(-2109.77701m)*V(G,K))*V(G,K)/sqrt((52.5190469)**2+(V(P,K)-(21.20975915))**2)))/(0.9206824464))**(1.712612552) .ends .SUBCKT SV572_3 A G K XV1 A G K TRIODENH +PARAMS: LIP= 1 LIF= 0.0018 RAF= 0.0012 RAS= 0.5 CDO= 0 + RAP= 0 ERP= 1.4 + MU0= 3.79928 MUR= 0.0002 EMC= 0.0000425 + GCO= 0 GCF= 0.0000349 + CGA=4.00E-12 CGK=4.00E-12 CAK=1.00E-12 .ENDS .SUBCKT SV572_10 A G K XV1 A G K TRIODENH +PARAMS: LIP= 1.4 LIF= 0.0008 RAF= 0.001 RAS= 1 CDO= 0 + RAP=-0.00117 ERP= 1.38 + MU0= 10 MUR= 0.0001 EMC= 0.0000272 + GCO=-0.2 GCF= 0.0003 + CGA=5.00E-12 CGK=6.40E-12 CAK=1.00E-12 .ENDS .subckt 801a 1 2 3 ; relatively accurate A1 and A2 model ; was kp162 kvb10 + params: mu=8.06 ex=1.596 kg1=11520 kp=662 kvb=662 rgi=180 + ccg=4.5p cgp=6p ccp=1.5p e1 7 0 value= +{v(1,3)/kp*log(1+exp(kp*(1/mu+v(5,3)/sqrt(kvb+v(1,3)*v(1,3)))))} re1 7 0 1g ; note in e1: grid voltage is behind r1. modl mu drop at hi +grid g1 1 3 value= {(pwr(v(7),ex)+pwrs(v(7),ex))/kg1} rcp 1 3 1g r1 2 5 {rgi} g2 5 3 value= {(pwr(v(2,3),ex)+pwrs(v(2,3),ex))/(rgi*(v(1,3)+120))} ; g1 curr rcg 2 3 1g c1 2 3 {ccg} c2 1 2 {cgp} c3 1 3 {ccp} .ends .subckt 811a 1 2 3 ; + params: mu=160 ex=1.317 kg1=1350 kp=100 kvb=1400 rgi=2000 + ccg=2.3p cgp=2.4p ccp=.9p + a=1.6667e-10 b=-.0000002875 c=0.0001758333 d=1.275 e1 7 0 value= +{v(1,3)/kp*log(1+exp(kp*(1/mu+v(2,3)/sqrt(kvb+v(1,3)*v(1,3)))))} re1 7 0 1g e2 8 0 value= +{a*v(1,3)*v(1,3)*v(1,3)+b*v(1,3)*v(1,3)+c*v(1,3)+d} re2 8 0 1g e3 9 0 table {v(2,3)} = + (-1 1.1e-16) + (0, .6e-4) (20, 5.38e-4) + (40, 6.25e-4) (60, 7.41e-4) re3 9 0 1g g1 1 3 value= {(pwr(v(7),v(8))+pwrs(v(7),v(8)))*v(9)} rcp 1 3 100k c1 2 3 {ccg} c2 1 2 {cgp} c3 1 3 {ccp} r1 2 5 {rgi} d3 5 3 dx .model dx d(is=70u rs=1 cjo=1pf N=180) .ends .subckt 811a_alt 1 2 3 ; relatively accurate A1 and A2 model + params: mu=160 ex=1.6 kg1=4000 kp=800 kvb=700 rgi=30 + ccg=2.3p cgp=2.4p ccp=.9p e1 7 0 value= +{v(1,3)/kp*log(1+exp(kp*(1/mu+v(5,3)/sqrt(kvb+v(1,3)*v(1,3)))))} re1 7 0 1g ; note in e1: grid voltage is behind r1. modl mu drop at hi +grid g1 1 3 value= {(pwr(v(7),ex)+pwrs(v(7),ex))/kg1} rcp 1 3 1g r1 2 5 {rgi*2.7} g2 5 3 value= {(pwr(v(2,3),ex)+pwrs(v(2,3),ex))/(rgi*(v(1,3)+500))} ; g1 curr rcg 2 3 1g c1 2 3 {ccg} c2 1 2 {cgp} c3 1 3 {ccp} .ends .subckt 833A 1 2 3 ; relatively accurate A1 and A2 model slightly better than 811A tweak + params: mu=35.8 ex=1.4 kg1=1100 kp=765 kvb=2200 rgi=16.5 r1=.22 + ccg=12.3p cgp=6.3p ccp=8.5p e1 7 0 value= +{v(1,3)/kp*log(1+exp(kp*(1/mu+(v(2,3)-i(g2)*v(1,3)*r1)/sqrt(kvb+v(1,3)*v(1,3)))))} re1 7 0 1g ; ip*r1 etc loss in e1 accounts for drop in mu at high + A2 operation g1 1 3 value= {(pwr(v(7),ex)+pwrs(v(7),ex))/kg1} ; anode current rcp 1 3 1g g2 2 3 value= {(pwr(v(2,3),ex)+pwrs(v(2,3),ex))/(rgi*(v(1,3)+29.5))} ; g1 current rcg 2 3 1g c1 2 3 {ccg} c2 1 2 {cgp} c3 1 3 {ccp} .ends .subckt 833A_alt 1 2 3 XV1 1 2 3 build_triode ; added 10-4-12 Stephie + params: mu=34 ex=1.6 kg1=2950 kvb=2400 kp=765 rgrid=15.5 vct=0 R1=140 ex1=1.55 rgi=1e8 goffset=800 + ccg=12.3p cgp=6.3p ccp=8.5p .ends .subckt 842 1 2 3 XV1 1 2 3 build_triode + params: mu=3.4 ex=1.7 kg1=33600 kvb=30 kp=69 rgrid=6k vct=4.8 R1=0 ex1=1.55 rgi=5k goffset=500 + ccg=7p cgp=4p ccp=3p .ends .SUBCKT 845 A G K +PARAMS: MU=5.355 ERP=1.5 + KK1=6323 KP=85.64 KVB=65.8 vg0=3 va0=0 + CGA=13.5E-12 CGK=6E-12 CAK=6.5E-12 RGI=4000; .func V_6() {KP*( (1/MU)+((V(G,K)-vg0)/sqrt(V(A,K)**2+KVB**2)) )} E8 8 0 VALUE={(V(A,K)-va0)/KP*LN(1+EXP(V_6()))} Eam am 0 VALUE= {2*Pow(V(8),ERP)/KK1} GA A K VALUE={V(am)} D3 5 k DX ; FOR GRID CURRENT R1 g 5 {RGI} ; FOR GRID CURRENT Rak A K 1G Rgk G K 1G C1 G K {CGK} C2 G A {CGA} C3 A K {CAK} .MODEL DX D(IS=1N RS=1) .ENDS .subckt 864 1 2 3 + params: mu=8.2 ex=1.372 kg1=9540 kp=165 kvb=2.84 rgi=6000 vct=.195 + ccg=3.3p cgp=5.3p ccp=2.1p e1 7 0 value= +{v(1,3)/kp*log(1+exp(kp*(1/mu+v(5,3)/sqrt(kvb+v(1,3)*v(1,3)))))} re1 7 0 1g g1 1 3 value= {(pwr(v(7),ex)+pwrs(v(7),ex))/kg1} rcp 1 3 1g c1 2 3 {ccg} c2 1 2 {cgp} c3 1 3 {ccp} r1 5 6 {rgi} v1 5 2 {vct} d3 6 3 dx .model dx d(is=1n rs=1 cjo=1pf tt=1n) .ends .subckt 1626 1 2 3 + params: mu=5.17 ex=1.652 kg1=11700 kp=16.1 kvb=11424 rgi=4000 vct=.01 + ccg=3.2p cgp=4.4p ccp=3.4p e1 7 0 value= +{v(1,3)/kp*log(1+exp(kp*(1/mu+v(5,3)/sqrt(kvb+v(1,3)*v(1,3)))))} re1 7 0 1g g1 1 3 value= {(pwr(v(7),ex)+pwrs(v(7),ex))/kg1} rcp 1 3 1g c1 2 3 {ccg} c2 1 2 {cgp} c3 1 3 {ccp} r1 5 6 {rgi} v1 5 2 {vct} d3 6 3 dx .model dx d(is=60u rs=1 cjo=1pf n=170) .ends .subckt 5670 1 2 3 + params: mu=40.9 ex=1.71 kg1=825 kp=126 kvb=708 rgi=2000 vct=.01 + ccg=2.2p cgp=1.1p ccp=1.0p e1 7 0 value= +{v(1,3)/kp*log(1+exp(kp*(1/mu+v(5,3)/sqrt(kvb+v(1,3)*v(1,3)))))} re1 7 0 1g g1 1 3 value= {(pwr(v(7),ex)+pwrs(v(7),ex))/kg1} rcp 1 3 1g c1 2 3 {ccg} c2 1 2 {cgp} c3 1 3 {ccp} r1 5 6 {rgi} v1 5 2 {vct} d3 6 3 dx .model dx d(is=1n rs=1 cjo=1pf tt=1n) .ends .subckt 5676 1 2 3 + params: mu=16.13 ex=1.526 kg1=3270 kp=126 kvb=2 rgi=5000 + ccg=1.3p cgp=4.0p ccp=2.0p e1 7 0 value= +{v(1,3)/kp*log(1+exp(kp*(1/mu+v(2,3)/sqrt(kvb+v(1,3)*v(1,3)))))} re1 7 0 1g g1 1 3 value= {(pwr(v(7),ex)+pwrs(v(7),ex))/kg1} rcp 1 3 1g c1 2 3 {ccg} c2 1 2 {cgp} c3 1 3 {ccp} r1 2 5 {rgi} d3 5 3 dx .model dx d(is=1n rs=1 cjo=1pf tt=1n) .ends .SUBCKT 5687wa A G K +PARAMS: MU=18.14 ERP=1.48 + KK1=665 KP=128.5 KVB=13.6 vg0=-0.7 + CGA=5.2p CGK=5.2p CAK=0.8p RGI=1000 .func V_6() {KP*( (1/MU)+((V(G,K)-vg0)/sqrt(V(A,K)**2+KVB**2)) )} E8 8 0 VALUE={(V(A,K))/KP*LN(1+EXP(V_6()))} Eam am 0 VALUE= {2*Pow(V(8),ERP)/KK1} GA A K VALUE={V(am)} D3 5 k DX ; FOR GRID CURRENT R1 g 5 {RGI} ; FOR GRID CURRENT Rak A K 1G Rgk G K 1G C1 G K {CGK} C2 G A {CGA} C3 A K {CAK} .MODEL DX D(IS=1N RS=1) .ENDS .SUBCKT 5751 A G K XV1 A G K TRIODENH +PARAMS: LIP= 1.5 LIF= 0.000016 RAF= 0.075772 RAS= 1 CDO=-0.53056 + RAP= 0.131285 ERP= 1.5 + MU0= 62.94685 MUR=-0.0111 EMC= 0.00000142 + GCO=-0.2 GCF= 0.00001 + CGA=1.40E-12 CGK=1.40E-12 CAK=4.50E-13 .ENDS .subckt 5842_417 1 2 3 + params: mu=42.4 ex=2.21 kg1=393 kp=629 kvb=446 rgi=2000 + ccg=9p cgp=1.8p ccp=.48p e1 7 0 value= +{v(1,3)/kp*log(1+exp(kp*(1/mu+v(2,3)/sqrt(kvb+v(1,3)*v(1,3)))))} re1 7 0 1g g1 1 3 value= {(pwr(v(7),ex)+pwrs(v(7),ex))/kg1} rcp 1 3 1g c1 2 3 {ccg} c2 1 2 {cgp} c3 1 3 {ccp} r1 2 5 {rgi} d3 5 3 dx .model dx d(is=1n rs=1 cjo=10pf tt=1n) .ends .SUBCKT 6336A A G K XV1 A G K TRIODENH +PARAMS: LIP= 1 LIF= 0.05 RAF= 0.0058 RAS= 0.7 CDO= 0 + RAP= 0.035 ERP= 1.5 + MU0= 3.07 MUR= 0.0019 EMC= 0.00064 + GCO= 0 GCF= 0 + CGA=2.18E-11 CGK=1.67E-11 CAK=3.8E-12 .ENDS .SUBCKT 6528 A G K XV1 A G K TRIODENH +PARAMS: LIP= 1 LIF= 0.05 RAF= 0.0058 RAS= 0.7 CDO= 0 + RAP= 0.035 ERP= 1.5 + MU0= 7.5 MUR= 0.0030 EMC= 0.0003 + GCO= 0 GCF= 0 + CGA=2.38E-11 CGK=1.78E-11 CAK=2.9E-12 .ENDS .subckt 6948 1 2 3 + params: mu=87 ex=1.568 kg1=1215 kp=228 kvb=15.75 rgi=3000 vct=.656 + ccg=1.6p cgp=.75p ccp=.25p e1 7 0 value= +{v(1,3)/kp*log(1+exp(kp*(1/mu+v(5,3)/sqrt(kvb+v(1,3)*v(1,3)))))} re1 7 0 1g g1 1 3 value= {(pwr(v(7),ex)+pwrs(v(7),ex))/kg1} rcp 1 3 1g c1 2 3 {ccg} c2 1 2 {cgp} c3 1 3 {ccp} r1 5 6 {rgi} v1 5 2 {vct} d3 6 3 dx .model dx d(is=1n rs=1 cjo=1pf tt=1n) .ends .subckt 7119 P G K Bp P K I=(0.2025738143m)*uramp(V(P,K)*ln(1.0+(0.04163079423)+exp((3.21147579)+(3.21147579)*((23.87181902)+(-454.0996836m)*V(G,K))*V(G,K)/sqrt((33.58240995)**2+(V(P,K)-(16.01952758))**2)))/(3.21147579))**(1.235675486) .ends .subckt 8532 1 2 3 + params: mu=78.6 ex=1.288 kg1=127 kp=190 kvb=288 rgi=2000 vct=.02 + ccg=7.5p cgp=2.8p ccp=5.0p e1 7 0 value= +{v(1,3)/kp*log(1+exp(kp*(1/mu+v(5,3)/sqrt(kvb+v(1,3)*v(1,3)))))} re1 7 0 1g g1 1 3 value= {(pwr(v(7),ex)+pwrs(v(7),ex))/kg1} rcp 1 3 1g c1 2 3 {ccg} c2 1 2 {cgp} c3 1 3 {ccp} r1 5 6 {rgi} v1 5 2 {vct} d3 6 3 dx .model dx d(is=1n rs=1 cjo=1pf tt=1n) .ends .SUBCKT D3a_7721 A G K XV1 A G K TRIODENH +PARAMS: LIP= 1 LIF= 1E-3 RAF= 240E-3 RAS= 2 CDO= -0.16 + RAP= 8E-3 ERP= 1.5 + MU0= 70 MUR= 1.5E-3 EMC= 4.7E-5 + GCO= -0.16 GCF= 213E-6 +CGA= 2.7E-12 CGK= 7.3E-12 CAK=3.1E-12 .ENDS .subckt E182CC 1 2 3 ; placca griglia catodo + params: mu=24 ex=1.7 kg1=75 kp=320 kvb=300 rgi=2k + ccg=2.3p cgp=2.4p ccp=.9p e1 7 0 value= +{v(1,3)/kp*log(1+exp(kp*(1/mu+v(2,3)/sqrt(kvb+v(1,3)*v(1,3)))))} re1 7 0 1g g1 1 3 value= {(pwr(v(7),ex)+pwrs(v(7),ex))/kg1} rcp 1 3 1g c1 2 3 {ccg} c2 1 2 {cgp} c3 1 3 {ccp} r1 2 5 {rgi} d3 5 3 dx .model dx d(is=1n rs=1 cjo=10pf tt=1n) .ends .subckt E88CC_6922 1 3 4 ; TRIODO DI SEGNALE (SQ PHILIPS) *modello sperimentale* g1 2 4 value = {(exp(1.5*(log((v(2,4)/(-0.1369*v(3,4)*v(3,4)-1.0232*v(3,4)+31.5035))+v(3,4)))))/120} c1 3 4 3.3p c2 3 1 1.4p c3 1 4 2.8p r1 3 5 10k d1 1 2 dx d2 4 2 dx2 d3 5 4 dx .model dx d(is=1p rs=1) .model dx2 d(is=1n rs=1) .ends ; eq. 6dj8, 7dj8, 6922 .SUBCKT ECC99 A G K +PARAMS: MU=23.33 ERP=1.48 + KK1=448.5 KP=172.65 KVB=8.92 + CGA=5p CGK=6p CAK=1p RGI=1000 .func V_6() {KP*( (1/MU)+(V(G,K)/sqrt(V(A,K)**2+KVB**2)) )} E8 8 0 VALUE={(V(A,K))/KP*LN(1+EXP(V_6()))} Eam am 0 VALUE= {2*Pow(V(8),ERP)/KK1} GA A K VALUE={V(am)} D3 5 k DX ; FOR GRID CURRENT R1 g 5 {RGI} ; FOR GRID CURRENT Rak A K 1G Rgk G K 1G C1 G K {CGK} C2 G A {CGA} C3 A K {CAK} .MODEL DX D(IS=1N RS=1) .ENDS .SUBCKT EL34_sofia A G K +PARAMS: MU=11.17 ERP=1.48 + KK1=597 KP=40.5 KVB=24.6 vg0=-.4 + CGA=1.1p CGK=15p CAK=8.5p RGI=4000 .func V_6() {KP*( (1/MU)+((V(G,K)-vg0)/sqrt(V(A,K)**2+KVB**2)) )} E8 8 0 VALUE={(V(A,K))/KP*LN(1+EXP(V_6()))} Eam am 0 VALUE= {2*Pow(V(8),ERP)/KK1} GA A K VALUE={V(am)} D3 5 k DX ; FOR GRID CURRENT R1 g 5 {RGI} ; FOR GRID CURRENT Rak A K 1G Rgk G K 1G C1 G K {CGK} C2 G A {CGA} C3 A K {CAK} .MODEL DX D(IS=1N RS=1) .ENDS .SUBCKT GM70 A G K +PARAMS: MU=8.037 ERP=1.5 + KK1=4121 KP=182.25 KVB=34 vg0=-5.7 + CGA=12.p CGK=8.p CAK=4.p RGI=1000 .func V_6() {KP*( (1/MU)+((V(G,K)-vg0)/sqrt(V(A,K)**2+KVB**2)) )} E8 8 0 VALUE={(V(A,K))/KP*LN(1+EXP(V_6()))} Eam am 0 VALUE= {2*Pow(V(8),ERP)/KK1} GA A K VALUE={V(am)} D3 5 k DX ; FOR GRID CURRENT R1 g 5 {RGI} ; FOR GRID CURRENT Rak A K 1G Rgk G K 1G C1 G K {CGK} C2 G A {CGA} C3 A K {CAK} .MODEL DX D(IS=1N RS=1) .ENDS .SUBCKT VV30B_sofia A G K +PARAMS: MU=3.775 ERP=1.52 + KK1=2230 KP=43.6 KVB=5 vg0=4 + CGA=15.p CGK=9.p CAK=4.3p RGI=1000 ; 300b cap values .func V_6() {KP*( (1/MU)+((V(G,K)-vg0)/sqrt(V(A,K)**2+KVB**2)) )} E8 8 0 VALUE={(V(A,K))/KP*LN(1+EXP(V_6()))} Eam am 0 VALUE= {2*Pow(V(8),ERP)/KK1} GA A K VALUE={V(am)} D3 5 k DX ; FOR GRID CURRENT R1 g 5 {RGI} ; FOR GRID CURRENT Rak A K 1G Rgk G K 1G C1 G K {CGK} C2 G A {CGA} C3 A K {CAK} .MODEL DX D(IS=1N RS=1) .ENDS .subckt Ba P G K Bp P K I=(0.0004817939578m)*uramp(V(P,K)*ln(1.0+(-0.3768201078)+exp((8.811478483)+(8.811478483)*((19.34729852)+(163.4465246m)*V(G,K))*V(G,K)/sqrt((-3.388214357e-005)**2+(V(P,K)-(-35.30179442))**2)))/(8.811478483))**(1.791391702) .ends Ba .subckt 205D P G K Bp P K I=(0.009509114467m)*uramp(V(P,K)*ln(1.0+(-0.4134930726)+exp((3.08305068)+(3.08305068)*((7.060954231)+(-19.03362103m)*V(G,K))*V(G,K)/sqrt((5.501519156e-006)**2+(V(P,K)-(25.94890019))**2)))/(3.08305068))**(1.544222766) .ends 205D